初三的数学知识点汇总(初中必背88个数学公式)(公式函数数学)
初中数学是我们学习数学的里程碑阶段,通过初中数学的学习,我们能够掌握一点根本的数学知识和窍门,为高中的学习奠定坚实的基础。接下来由我将为各位汇总初三数学的88个必背公式。
1、 二次根式的求值公式:√a*√b=√(ab)。
2、 两角和差的余弦公式:cos(A ± B) = cosAcosB - sinAsinB。
3、 任意角的正弦和余弦公式:sin(A ± B) = sinAcosB ± cosAsinB。
4、 两角和差的正弦公式:sin(A ± B) = sinAcosB ± cosAsinB。
5、 任意角的和差化积公式:cos(A ± B) = cosAcosB ± sinAsinB。
6、 二次根式的性质:(√a)² = a。
7、 三角函数的性质:sin²A + cos²A = 一、
8、 一次函数的一般式方程:y = kx + b。
9、 一次函数的斜率与函数值的关系:k = (y₂ - y₁) / (x₂ - x₁)。
10、 平面上两点距离的公式:AB = √((x₂ - x₁)² + (y₂ - y₁)²)。
11、 正方形的对角线长度公式:d = a√二、
12、 任意两个角的和的余弦公式:cos(A + B) = cosAcosB - sinAsinB。
13、 任意两个角的和的正弦公式:sin(A + B) = sinAcosB + cosAsinB。
14、 一次函数的平行线和垂直线的斜率关系:k₁ × k₂ = -一、
15、 一次函数的平移变换公式:y = k(x - a) + b。
16、 一次函数的对称轴方程:x = -b / (2k)。
17、 等腰三角形的性质:底角相等,腰相等。
18、 任意两个角的差的余弦公式:cos(A - B) = cosAcosB + sinAsinB。
19、 任意两个角的差的正弦公式:sin(A - B) = sinAcosB - cosAsinB。
20。 正方形的周长公式:C = 4a。
21、 二次函数的一般式方程:y = ax² + bx + c。
22、 二次函数的对称轴方程:x = -b / (2a)。
23、 二次函数之顶点坐标公式:(a, -(b² - 4ac) / (4a))。
二十四。 二次函数的判别式和根的关系:Δ = b² - 4ac。
25、 二次函数的开口和函数值的关系:若a > 0,则开口向上,且有最小值;若a < 0,则开口向下,且有最大值。
26、 二次函数的平移变换公式:y = a(x - h)² + k。
27、 圆的面积公式:S = πr²。
28、 圆的周长公式:C = 2πr。
29、 等差数列的通项公式:an = a₁ + (n - 1)d。
30。 等差数列的前n项和公式:Sn = n / 2(a₁ + an)。
31、 等差数列的公差和项数的关系:d = (an - a₁) / (n - 1)。
32、 等差数列的首项和末项的关系:an = a₁ + (n - 1)d。
33、 等差数列的首项公式:a₁ = an - (n - 1)d。
34、 等差数列的项数公式:n = (an - a₁) / d + 一、
35、 等差数列的和项公式:Sn = n(a₁ + an) / 二、
36、 等差数列的末项公式:an = a₁ + (n - 1)d。
37、 等比数列的通项公式:an = a₁ · q^(n - 1)。
38、 等比数列的前n项和公式:Sn = a₁(qⁿ - 1) / (q - 1)。
39、 等比数列的公比和项数的关系:q = an / a{n - 1}。
40。 等比数列的首项和末项的关系:an = a₁ · qⁿ⁻¹。
41、 等比数列的首项公式:a₁ = an / qⁿ⁻¹。
42、 等比数列的项数公式:n = logq(an / a₁) + 一、
43、 等比数列的和项公式:Sn = a₁(qⁿ - 1) / (q - 1)。
44、 立方差公式:a³ - b³ = (a - b)(a² + ab + b²)。
45、 立方和公式:a³ + b³ = (a + b)(a² - ab + b²)。
46、 余弦二倍角公式:cos2A = 2cos²A - 一、
47、 余弦二倍角公式:cos2A = 1 - 2sin²A。
48、 正弦二倍角公式:sin2A = 2sinAcosA。
49、 三角函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB。
50。 集合的并集和交集公式:A∪B = B∪A,A∩B = B∩A。
51、 集合的分配律:A∪(B∪C) = (A∪B)∪C,A∩(B∩C) = (A∩B)∩C。
52、 平行线的性质:同位角相等,内错角相等,平行线的交线与平行线各边所成的内错角相等。
53、 等边三角形的性质:三个内角相等,三个外角相等,三边相等。
54、 一次函数图像的性质:像一条直线。
55、 二次函数图像的性质:像一条抛物线。
56、 二次函数的对称轴和对称中心的关系:二次函数的对称轴过对称中心。
57、 直角三角形的性质:勾股定理成立,两个锐角之和为90°。
58、 二次函数图像的平移变换:y = a(x - h)² + k。
59、 倍角公式:cos2A = 1 - 2sin²A,cos2A = 2cos²A - 1,tan2A = 2tanA / (1 - tan²A)。
60。 指数函数的性质:幂运算和开方运算的逆运算。
61、 对数函数的性质:幂运算和开方运算的逆运算。
62、 对数函数的换底公式:loga(b) = logc(b) / logc(a)。
63、 伸缩比例的性质:伸缩比例为k的图形,面积、周长和体积都变为原来的k²倍。
64、 反比例函数的性质:y = k / x,k为常数。
65、 正比例函数的性质:y = kx,k为常数。
66、 二次函数的判断开口方向的方式方法:若a > 0,则开口向上;若a < 0,则开口向下。
67、 平面内一点到另一个点的距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)²)。
68、 三角形面积公式:S = 1/2bh。
69、 弧长和圆心角的关系:L = 2πr × (θ / 360°)。
70。 弧长和半径的关系公式:L = rθ。
71、 三角形外角和内角的关系:外角 = 内角 + 180°。
72、 内角和外角的关系:内角 = 180° - 外角。
73、 一次函数关于x轴对称的条件:若f(-x) = -f(x)。
74、 一次函数关于y轴对称的条件:若f(-x) = f(x)。
75、 一次函数关于原点对称的条件:若f(-x) = f(x)且f(0) = 0。
76、 二次方程的求根公式:x = (-b ± √(b² - 4ac)) / (2a)。
77、 二次方程的两根和两根积的关系:根与系数的关系。
78、 对称轴与判别式的关系:对称轴是x = -b / (2a),判别式是b² - 4ac。
79、 二次方程的两根性质:两根和为 -b / a,两根积为c / a。
80。 二次函数开口的方向与系数a的关系:若a > 0,则开口向上;若a < 0,则开口向下。
81、 二次方程的根与系数的关系:根与系数之间的联系。
82、 平行线的线段分割定理:两条平行线被一组过这两条平行线的直线所截,那么截线段之间的比例相等。
83、 等腰三角形的顶角和底角的关系:顶角 = 180° - 2底角。
84、 点到平面的距离公式:d = |Ax₁ + By₁ + Cz₁ + D| / √(A² + B² + C²)。
85、 两点间距离的公式:d = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)。
86、 立体图形的体积公式:V = S · h,V = S · l / 三、
87、 立体图形的表面积公式:S = 底面积 + 侧面积。
88、 幂的性质:a¹ = a,a⁰ = 一、
这便是初三数学的88个必背公式,通过牢记这几个公式,我们能够在数学学习中运用自如,解题更加得心应手。愿家人们在复习中能够加油,取得好成绩!!!